Studies of imipramine binding to human serum albumin by high-performance affinity chromatography.
نویسندگان
چکیده
Binding by the drug imipramine to the protein human serum albumin (HSA) was studied by using high-performance affinity chromatography. The association equilibrium constants and number of binding sites for imipramine with HSA were first estimated by utilizing frontal analysis. Imipramine was found to have one major binding site on HSA with an association equilibrium constant of 1.6 x 10(5) M(-1) at pH 7.4 and 37 degrees C, as well as a second group of weaker and non-specific binding regions (8-9 mol/mol HSA) with an average association equilibrium constant of 1.5 x 10(3) M(-1). Competition studies based on zonal elution were performed to identify the location of the major binding site for imipramine on HSA. Imipramine was found to have direct competition with L-tryptophan, which indicated that imipramine was interacting with Sudlow site II, or the indole-benzodiazepine site of HSA. No competition or allosteric effects were noted between imipramine and warfarin, a probe for Sudlow site I or the warfarin-azapropazone site of HSA. The association equilibrium constant found for imipramine at its site of competition with L-tryptophan also agreed with the value that was obtained for the major binding site of imipramine in the frontal analysis studies. These results confirmed that Sudlow site II was the location of the major binding site for imipramine on HSA. These results gave good agreement with previous observations made in the literature and should provide a more detailed description of how imipramine is transported in blood and of how it may interact with other drugs in the body.
منابع مشابه
Kinetic studies of drug-protein interactions by using peak profiling and high-performance affinity chromatography: examination of multi-site interactions of drugs with human serum albumin columns.
Carbamazepine and imipramine are drugs that have significant binding to human serum albumin (HSA), the most abundant serum protein in blood and a common transport protein for many drugs in the body. Information on the kinetics of these drug interactions with HSA would be valuable in understanding the pharmacokinetic behavior of these drugs and could provide data that might lead to the creation ...
متن کاملIsothermal Titration Calorimetry and Molecular Dynamics Simulation Studies on the Binding of Indometacin with Human Serum Albumin
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Drug binding to HSA is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. In this study, isothermal titration calorimetry and molecular dynamics simulation of HSA and its complex with indometacin (IM) were performed to investigate thermodynamics parameters and th...
متن کاملMolecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...
متن کاملAnalysis of drug-protein binding by ultrafast affinity chromatography using immobilized human serum albumin.
Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in a...
متن کاملCo-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin
Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chromatography. B, Analytical technologies in the biomedical and life sciences
دوره 877 11-12 شماره
صفحات -
تاریخ انتشار 2009